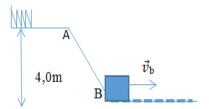
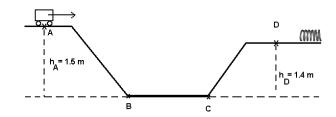

REPARTIDO 5 - TRABAJO Y ENERGÍA

- **1.** Un auto se mueve con una velocidad inicial de 60km/h y luego aumenta hasta llegar a 90km/h. Calcula la variación de energía cinética del auto. Deberás convertir antes las velocidades a m/s
- **2.** Calcula el trabajo neto sabiendo que un auto de 900kg de masa, reduce su velocidad de 90m/s a 45m/s.
- **3.** Un objeto de 2,0kg se lanza hacia arriba, sube 5,0m y después cae regresando al punto de partida. Calcula el trabajo realizado por el peso en la subida, en la bajada y en el trayecto total.
- **4.** Una masa de 5,0kg se eleva desde el piso hasta una altura de 4,5 metros por intermedio de una fuerza vertical de módulo 80N. Determina:
- a) El trabajo realizado por la fuerza mencionada
- b) El trabajo realizado por la fuerza peso
- c) La energía cinética final de la masa si inicialmente se encontraba en reposo.
- **5.** Un bloque de 2.5 kg de masa es empujado 2.2 m a lo largo de una mesa horizontal sin fricción por una fuerza constante de 16.0 N dirigida a 25° debajo de la horizontal. Encuentre el trabajo efectuado por: la fuerza aplicada, la fuerza normal ejercida por la mesa, la fuerza de la gravedad, y la fuerza neta sobre el bloque
- **6**. Un esquiador de masa 75kg parte del reposo desde la parte superior de una colina sin fricción a 40m de altura. Calcula la velocidad con la que llegará al pie de la colina.



- 7. Un objeto se suelta desde una altura de 2,5 metros.
 - a) Calcule la velocidad con que impacta el piso a través de consideraciones de trabajo y energía.
 - b) Si luego de rebotar se eleva hasta una altura de 1,5 metros. ¿Cuánta energía mecánica perdió en el impacto?
 - c) Calcula el trabajo de la fuerza peso en todo el trayecto


- **8.** En lo alto de una rampa (h = 1,2m) se suelta un bloque de masa 7,0kg. En la zona marcada en la figura el rozamiento es apreciable (μ = 0,25), en las demás partes de la superficie no hay rozamiento.
- a) Calcula la velocidad del bloque justo antes de entrar a la zona rugosa
- b) Calcula el trabajo de la fuerza de rozamiento
- c) Calcula la velocidad del bloque luego de salir de la zona con rozamiento.

9. Un resorte de constante k= 300N/m, se libera impulsando una caja de 3,0Kg que luego desciende por una rampa liza desde A, al llegar a B lo hace con una velocidad de 11m/s. Después de B, se establece un coeficiente de rozamiento de 0,40.

- a) Determine el valor de compresión del resorte.
- b) Calcule la distancia recorrida desde B por el bloque, antes de detenerse.
- **10.** El carrito del dibujo de masa 2.0kg pasa por A en las condiciones indicadas, atraviesa la zona de rozamiento BC=15m donde el coeficiente de rozamiento es de 0.30, pasa por D, y luego comprime 0.20 m el resorte de constante 100 N/m.
 - a. Calcule el trabajo realizado por la fuerza de rozamiento.
 - b. Calcule el módulo de la velocidad del carrito al pasar por A.

