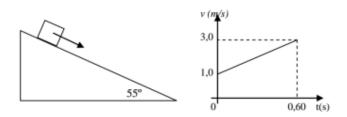
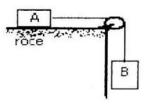

REPARTIDO 4 - SEGUNDA LEY DE NEWTON

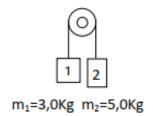
- 1. Un bloque de 2.5 kg de masa que inicialmente está en reposo, es empujado 2,2 m a lo largo de una mesa horizontal con una fuerza constante de 18 N, dirección horizontal y sentido hacia la izquierda. El rozamiento entre el bloque y la mesa es despreciable. Calcula:
- a) La fuerza neta que actúa sobre el bloque y su aceleración
- b) La velocidad final luego de recorrer los 2,2 metros.
- 2. Un bloque de 3,0 kg que se mueve inicialmente por un plano horizontal con una velocidad inicial (indicada en la figura) de 2,0 m/s, se le aplica una fuerza que actúa como muestra la figura y de módulo 20N. El coeficiente de rozamiento entre el bloque y la superficie es 0,15. a) Calcular la aceleración del bloque b) Calcular su velocidad final luego de 4,5 segundos.

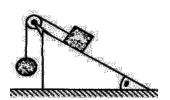

Sugerencia: Comenzar realizando un diagrama de fuerzas, cuidado, ino incluir el vector velocidad en el diagrama de fuerzas!

3. Una caja pasa por el lugar mostrado en la figura con una velocidad de 8,0 m/s. El rozamiento entre la caja y la superficie se considera despreciable.

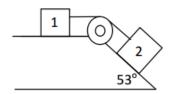


- a) Calcula la aceleración de la caja
- b) ¿Cuánto tiempo demora en volver a pasar por el mismo lugar?
- **4.** El bloque de 200 g de masa se desliza por el plano inclinado como se muestra en la figura adjunta. La velocidad que adquiere el bloque en función del tiempo se muestra en el gráfico.
 - a. ¿Cuánto vale la fuerza neta sobre el bloque?
 - b. ¿Cuánto vale el coeficiente de rozamiento entre el bloque y el plano?

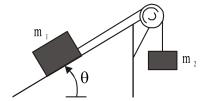

Sugerencia: como primer paso, calcular la aceleración del bloque a partir del gráfico de velocidad vs tiempo.


5. Un cuerpo "A" en reposo de masa 2,5Kg se vincula a un cuerpo "B" de masa 0,40kg mediante una cuerda ideal. Inicialmente el cuerpo B se encuentra a una altura de 0,75m.El coeficiente de roce entre la superficie y el cuerpo A es 0,10. Calcule la aceleración y la tensión de la cuerda. ¿qué velocidad tiene cada cuerpo luego de 3,5segundos?

- **6.** Se conectan dos masas de 3,0 Kg y 5,0 Kg por medio de una cuerda ideal y una polea como se indica en la figura. Se desprecia la masa de la polea. Determine:
- a) La tensión en la cuerda.
- b) La aceleración de cada masa.

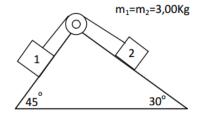


7. Se conectan dos masas por medio de una cuerda ideal y una polea también ideal, una de las masas se desplaza sobre un plano inclinado de 60° sin rozamiento. La masa del cubo es m: = 2,0 kg, La masa de la esfera es : M = 3,0 kg. Calcule:



- a) La aceleración de las masas
- b) La fuerza tensión que realiza la cuerda sobre los cuerpos

8. Dos bloques de masas m1 = 2,5kg y m2 = 5,0kg están dispuestos como muestra el dibujo y vinculados a través de una cuerda ideal. El coeficiente de rozamiento en las dos superficies es de 0,15. Determinar: a) la aceleración del sistema b) la tensión de la cuerda. c) la aceleración de cada bloque si se rompe la cuerda.


9. Un bloque de masa m_1 = 3,70 kg está sobre un plano inclinado de ángulo θ = 28,0°, y unido por una cuerda a un segundo bloque de masa m_2 = 2,86 kg que cuelga verticalmente. Entre el bloque 1 y la superficie hay un coeficiente de rozamiento de 0,20.

- a) Calcule la aceleración de cada bloque.
- b) Halle la tensión en la cuerda.

masa del bloque 2.

10. Dos bloques se disponen según la figura adjunta (considere roces despreciables e hilo ideal). Determine: a) La aceleración del bloque 1 y del bloque 2. b) La tensión del hilo.

11. El dibujo muestra un sistema formado por 2 bloques unidos por una cuerda.- De acuerdo a los datos y sabiendo que el sistema se desplaza en el sentido indicado y con una aceleración de 1,2 m/s², calcule la tensión de la cuerda y la

