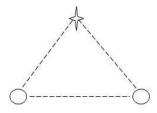

REPARTIDO nº2 - 6to año - Física

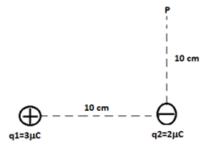
1. Dos cargas puntuales q1=3,0nC, q2=4,0nC se colocan como indica la figura. Calcule y represente el campo eléctrico neto en el punto A



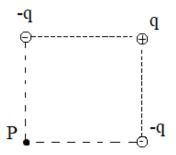
2. Dada la distribución de cargas de la figura determinar el campo eléctrico neto en el punto P. Datos: q1=2,3nC, q2=-3,0nC, q3=1,2nC, d=0,15m

3. Dos cargas puntuales de $20\mu C$ se encuentran ubicadas como muestra la figura. Determinar el campo eléctrico en el punto B

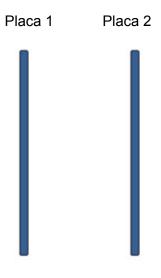
4. Un triángulo equilátero de 10cm de lado posee en dos de sus vértices dos cargas de igual signo y valor (q=3,0nC) como muestra la figura. Determinar el campo eléctrico neto generado por ambas cargas en el tercer vértice del triángulo.



5. Una placa cargada uniformemente con una densidad superficial de carga de $\sigma = -3.0 \times 10^{-6} \text{ C/m}^2 \text{ se}$ encuentra como muestra la figura. Sobre ella se coloca una carga de 2,0x10⁻⁷C a 15cm del punto A.

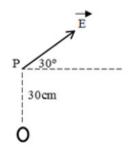

- a) Calcule y represente el campo eléctrico en el punto A generado por la partícula y por la placa.
- b) Determine el campo eléctrico neto en el punto A.
- c) ¿Existe algún lugar donde el campo eléctrico sea nulo? En caso afirmativo indique dónde.

6. Dos partículas cargadas se encuentran distribuidas como muestra la figura. Determina el campo eléctrico en el punto P.



- **7.** En los vértices de un triángulo equilátero de 0.50m de lado se colocan cargas de valor +3.0x10-6C, -3.0x10-6C y -3.0x10-6C según se aprecia en el dibujo. Determine:
- a- el campo eléctrico resultante en el punto P.
- b- La fuerza neta sobre la carga positiva

8. Se disponen dos placas de densidades de carga opuestas, verticales y paralelas. Encuentra una expresión para el campo eléctrico neto para los puntos del espacio que están entre las placas y para puntos a los costados de ellas.


Nota: si te dificulta el hecho de que no haya datos, puedes usar los siguientes: $\sigma_1 = 7,08 \times 10^{-10} \text{ C/m}^2$, $\sigma_2 = -7,08 \times 10^{-10} \text{ C/m}^2$

- **9.** Sobre una placa uniformemente cargada se encuentra una partícula suspendida en equilibrio. **DATOS:** masa y carga de la partícula: $m = 8x10^{-10} \, kg$ q= 1,6x10⁻¹²C
- a) Determina el campo eléctrico generado por la placa para que esto pueda suceder.
- b) Calcula la densidad superficial de carga de la placa e indica su signo. Justifica.

10. En la figura se muestra una placa cargada y una partícula q. Se conoce que el campo eléctrico neto en el punto P vale 40N/C. Calcule el valor de la densidad superficial de carga de la placa y la carga eléctrica de la partícula.

